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Buzzword.Bingo.Summary 
    



      
A summary struct and functions for the Multi-Player Buzzword Bingo game.
The summary struct contains the fields squares, scores and winner
representing the characteristics of a summary in the Multi-Player Buzzword
Bingo game.
Based on the course Multi-Player Bingo by Mike and Nicole Clark.

      


      
        Summary


  
    Types
  


    
      
        player_score()

      


        A map of player attributes



    


    
      
        score()

      


        A tuple of player name and player score



    


    
      
        scores()

      


        A serializable map assigning player scores to player names



    


    
      
        t()

      


        A summary struct for the Multi-Player Buzzword Bingo game



    





  
    Functions
  


    
      
        new(game)

      


        Creates a summary struct from the given game.



    


    
      
        print(summary_or_game)

      


        See Buzzword.Bingo.Summary.Formatter.print/1.



    





      


      
        Types

        


  
    
      
      Link to this type
    
    player_score()


      
       
       View Source
     


  


  

      

          @type player_score() :: %{
  color: Buzzword.Bingo.Player.color(),
  score: Buzzword.Bingo.Game.points_sum(),
  marked: Buzzword.Bingo.Game.marked_count()
}


      


A map of player attributes

  



  
    
      
      Link to this type
    
    score()


      
       
       View Source
     


  


  

      

          @type score() :: {Buzzword.Bingo.Player.name(), player_score()}


      


A tuple of player name and player score

  



  
    
      
      Link to this type
    
    scores()


      
       
       View Source
     


  


  

      

          @type scores() :: %{required(Buzzword.Bingo.Player.name()) => player_score()}


      


A serializable map assigning player scores to player names

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Buzzword.Bingo.Summary{
  scores: scores(),
  squares: [[Buzzword.Bingo.Square.t()]],
  winner: Buzzword.Bingo.Player.t() | nil
}


      


A summary struct for the Multi-Player Buzzword Bingo game

  


        

      

      
        Functions

        


  
    
      
      Link to this function
    
    new(game)


      
       
       View Source
     


  


  

      

          @spec new(Buzzword.Bingo.Game.t()) :: t() | {:error, atom()}


      


Creates a summary struct from the given game.

  



  
    
      
      Link to this function
    
    print(summary_or_game)


      
       
       View Source
     


  


  

      

          @spec print(t() | Buzzword.Bingo.Game.t()) :: :ok


      


See Buzzword.Bingo.Summary.Formatter.print/1.

  


        

      



  

    
Buzzword.Bingo.Summary.Formatter 
    



      
Writes a summary or game struct as a formatted table to :stdio.

      


      
        Summary


  
    Functions
  


    
      
        print(summary_or_game)

      


        Writes the given summary or game struct as a formatted table to :stdio.



    





      


      
        Functions

        


  
    
      
      Link to this function
    
    print(summary_or_game)


      
       
       View Source
     


  


  

      

          @spec print(Buzzword.Bingo.Summary.t() | Buzzword.Bingo.Game.t()) :: :ok


      


Writes the given summary or game struct as a formatted table to :stdio.
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