

 Buzzword Bingo Summary

 v0.1.42

 Table of contents

 	Modules

 	Buzzword.Bingo.Summary

 	Buzzword.Bingo.Summary.Formatter

Buzzword.Bingo.Summary

A summary struct and functions for the Multi-Player Buzzword Bingo game.
The summary struct contains the fields squares, scores and winner
representing the characteristics of a summary in the Multi-Player Buzzword
Bingo game.
Based on the course Multi-Player Bingo by Mike and Nicole Clark.

 Summary

 Types

 player_score()

 A map of player attributes

 score()

 A tuple of player name and player score

 scores()

 A serializable map assigning player scores to player names

 t()

 A summary struct for the Multi-Player Buzzword Bingo game

 Functions

 new(game)

 Creates a summary struct from the given game.

 print(summary_or_game)

 See Buzzword.Bingo.Summary.Formatter.print/1.

 Types

 Link to this type

 player_score()

 View Source

 @type player_score() :: %{
 color: Buzzword.Bingo.Player.color(),
 score: Buzzword.Bingo.Game.points_sum(),
 marked: Buzzword.Bingo.Game.marked_count()
}

A map of player attributes

 Link to this type

 score()

 View Source

 @type score() :: {Buzzword.Bingo.Player.name(), player_score()}

A tuple of player name and player score

 Link to this type

 scores()

 View Source

 @type scores() :: %{required(Buzzword.Bingo.Player.name()) => player_score()}

A serializable map assigning player scores to player names

 Link to this type

 t()

 View Source

 @type t() :: %Buzzword.Bingo.Summary{
 scores: scores(),
 squares: [[Buzzword.Bingo.Square.t()]],
 winner: Buzzword.Bingo.Player.t() | nil
}

A summary struct for the Multi-Player Buzzword Bingo game

 Functions

 Link to this function

 new(game)

 View Source

 @spec new(Buzzword.Bingo.Game.t()) :: t() | {:error, atom()}

Creates a summary struct from the given game.

 Link to this function

 print(summary_or_game)

 View Source

 @spec print(t() | Buzzword.Bingo.Game.t()) :: :ok

See Buzzword.Bingo.Summary.Formatter.print/1.

Buzzword.Bingo.Summary.Formatter

Writes a summary or game struct as a formatted table to :stdio.

 Summary

 Functions

 print(summary_or_game)

 Writes the given summary or game struct as a formatted table to :stdio.

 Functions

 Link to this function

 print(summary_or_game)

 View Source

 @spec print(Buzzword.Bingo.Summary.t() | Buzzword.Bingo.Game.t()) :: :ok

Writes the given summary or game struct as a formatted table to :stdio.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

